Chương trình hình học trong bậc trung học phổ thông rất đa dạng về các loại hình và chúng cũng rất dễ dàng gây khó khăn trong việc nhận biết và hiểu rõ về chúng. Đặc biệt là khối lập phương, vậy làm sao để ta có thể phân biệt và làm rõ được các tính chất thì chủ đề này sẽ giúp ta trả lời những thắc mắc đó.

Công thức tính bán kính mặt cầu ngoại tiếp khối lập phương

Công thức tính bán kính mặt cầu ngoại tiếp khối lập phương là bán kính mặt cầu ngoại tiếp bằng  độ dài đường chéo của hình lập phương.

Tìm chiều cao hoặc mực nước của thùng chứa

Sử dụng các khái niệm đã học cho đến nay, chúng ta hãy cố gắng giải quyết các câu hỏi sau.

Một bể hình chữ nhật chứa \(\small{12,5 \textsf{ tôi}}\) của nước. Nếu diện tích đáy bể là \(\small\mathsf{500 \;cm^2}\) thì mực nước trong bể cao bao nhiêu? \(\small\mathsf{(1 \, tôi = 1000 \,cm^3)}\)

\(\small{\begin{align}​​ \mathsf{1\,tôi} &= \mathsf{1000 \,cm^3} \\ \mathsf{12,5 \,tôi}  &= \mathsf{12.5 \times 1000 \,cm^3}\\ &= \mathsf{12 \,500 \,cm^3} \end{align}}\)

\(\small{\begin{align}​​ \textsf{Thể tích nước trong bể} &= \mathsf{12\,500 \,cm^3} \\ \textsf{Diện tích đáy bể} &= \mathsf{500 \,cm^2} \end{align}}\)

\(\small{ \bbox[8px, border:2px solid red]{ \textbf{Âm lượng} = \textbf{Vùng cơ sở × Chiều cao} }}\)

\(\small{\begin{align}​​ &\textsf{Chiều cao mực nước trong bể} \\ &= \mathsf{12 \,500 \,cm^3 \div 500 \,cm^2} \\ &= \mathsf{25 \,cm} \end{align}}\)

Một thùng chứa hình chữ nhật có diện tích đáy là \(\small\displaystyle\mathsf{750 \,cm^2}\). Sally đổ một ít xi-rô xoài vào hộp đựng cho đến khi nó tan hết.\(\small\displaystyle\mathsf{\frac {3}{8}}\) đầy. Sau đó cô đổ \(\small\displaystyle\mathsf{11\frac {1}{4}}\) lít nước vào thùng cho đến khi đầy. Chiều cao của thùng chứa hình chữ nhật là bao nhiêu?

\(\small{ \begin{align}​​ \mathsf{1 \,lít} &= \mathsf{1000 \,cm^3} \\ \mathsf{11\frac{1}{4} \textsf{ lít nước}} &= \mathsf{11.25 × 1000 \,cm^3} \\ &= \mathsf{11 \,250 \,cm^3​} \end{align} }\)

\(\small{ \begin{align}​​ \textsf{Khối lượng của container đầy đủ} &= \textsf{Khối lượng xi-rô xoài} \\ & \qquad\quad + \\ & \quad\, \textsf{Khối lượng nước} \end{align} }\)

\(\small{ \begin{align}​​ \textsf{Khối lượng siro xoài} &= \mathsf{\frac{3}{8}} \textsf{ tổng khối lượng}\\ \textsf{Khối lượng nước} &= \mathsf{1-\frac{3}{8}}\\ &=\mathsf{\frac{5}{8}} \textsf{ tổng khối lượng}​ \end{align} }\)

\(\small{ \begin{align}​​ \mathsf{\frac {5}{8} \textsf{ tổng khối lượng}} &= \mathsf{11\,250 \,cm^3} \\ \mathsf{\frac {1}{8} \textsf{ tổng khối lượng}} &= \mathsf{11\,250 \,cm^3 \div 5}\\ &= \mathsf{2250 \,cm^3} \end{align} }\)

\(\small{ \begin{align}​​ \mathsf{\frac {3}{8} \textsf{ tổng khối lượng}} &= \mathsf{2250 \,cm^3 \times 8}\\ &= \mathsf{18\,000 \,cm^3} \end{align} }\)

\(\small{ \begin{align}​​ \textsf{Chiều cao của thùng chứa} &= \mathsf{Âm\; lượng \div Vùng \;cơ \;sở} \\ &= \mathsf{18\,000 \,cm^3 ÷ 750 \,cm^2} \\ &= \mathsf{24 \,cm} \end{align} }\)

Mặt được tô bóng của hình hộp chữ nhật là một hình vuông. Chiều dài của hình chữ nhật là \(\small{\textsf{12 m}}\) và thể tích của nó là \(\small{\mathsf{1452 \,m^3}}\). Tìm độ dài một cạnh của hình vuông.

\(\small{ \begin{align}​​​​ &\textsf{Thể tích hình lập phương} \\&= \textsf{Chiều dài × Chiều rộng × Chiều cao} \\ &= \textsf{Diện tích của khuôn mặt bóng mờ × Chiều cao} \end{align}}\)

\(\small{ \begin{align}​​​​ \textsf{Diện tích mặt vuông} &= \textsf{Âm lượng ÷ Chiều cao}\\ &= \mathsf{1452 \,m^3 ÷ 12 \,m}\\ &= \mathsf{121 \,m^2} \end{align}}\)

Vì mặt được tô bóng của hình hộp chữ nhật là hình vuông nên  \(\small{\textsf{Chiều dài = Chiều rộng}}\)

\(\small\begin{align} \textsf{Diện tích hình vuông} &= \textsf{Chiều dài} \times \textsf{Chiều dài} \\ \textsf{Chiều dài} &= \sqrt{121}\;m^2\\ &= 11 \textsf{m}\ \end{align}\)

Mặt được tô bóng của hình hộp chữ nhật là hình vuông. Chiều dài của hình chữ nhật là \(\small{\textsf{28 cm}}\) và thể tích của nó là \(\small{\mathsf{1008 \,cm^3}}\). Tìm độ dài một cạnh của hình vuông.

\(\small{ \begin{align}​​​​ &\textsf{Thể tích hình lập phương}\\&= \textsf{Chiều dài × Chiều rộng × Chiều cao} \\ &= \textsf{Diện tích của khuôn mặt bóng mờ × Chiều dài} \end{align}}\)

\(\small{ \begin{align}​​​​ \textsf{Diện tích mặt vuông} &= \textsf{Âm lượng ÷ Chiều cao}\\ &= \mathsf{1008 \,cm^3 ÷ 28 \,cm}\\ &= \mathsf{36 \,cm^2} \end{align}}\)

\(\small{\begin{align}​​​​​ \textsf{Cạnh của hình vuông} &= \mathsf{\sqrt{36} \,cm^2} \\ &= \mathsf{6 \,cm​} \end{align}}\)

Sam đổ đầy nước vào một cái bể hình chữ nhật có đáy hình vuông chứa đầy nước như hình bên dưới. Thể tích nước trong bể là 972 cm³. Tìm chiều dài của bể hình chữ nhật.

\(\small{\begin{align}​​​ \textsf{Khối lượng nước} &= \mathsf{972 \,cm^3} \end{align}}\)

\(\small\bbox[8px,border:2px solid red] { \textbf{Khối lượng nước} = \textbf{Vùng cơ sở × Chiều cao} }\)

\(\small{\begin{align}​​​ \textsf{Khối lượng nước} &= \textsf{Vùng cơ sở ÷ Chiều cao} \\ &= \mathsf{972 \,cm^3 \div 12 \,cm} \\ &= \mathsf{81 \,cm^2} \end{align}}\)

\(\small{\begin{align}​​​ \textsf{Cạnh của đáy hình vuông} &= \mathsf{\sqrt{81} \,cm^2} \\ &= \mathsf{9 \,cm} \end{align}}\)

\(\small{\begin{align}​​​ \textsf{Chiều dài của bể hình chữ nhật} &= \mathsf{9 \,cm} ​ \end{align}}\)

Diện tích một mặt của hình lập phương là 144cm2. Thể tích của bốn khối như vậy là bao nhiêu?

\(\small{\begin{align}​​​ \textsf{Cạnh của khối lập phương} &= \mathsf{\sqrt{144} \,cm} \\ &= \mathsf{12 \,cm} \end{align}}\)

\(\small{\begin{align}​​​ &\textsf{Khối lượng của mỗi khối} \\&= \textsf{Chiều dài × Chiều rộng × Chiều cao}\\ &= \mathsf{12 \,cm \times 12 \,cm \times 12 \,cm}\\ &= \mathsf{1728 \,cm^3} \end{align}}\)

\(\small{\begin{align}​​​ \textsf{Thể tích của bốn khối} &= \mathsf{4 \times 1728 \,cm^3} \\   &= \mathsf{6912 \,cm^3} ​​ \end{align}}\)

\(\small{\mathsf{6912 \,cm^3}}\)

Trong tập Toán lớp 6 chúng ta cần biết những nội dung sau:

Hãy nhớ rằng, luyện tập là chìa khóa dẫn đến sự hoàn hảo.

Tính độ dài cạnh của hình lập phương/hình lập phương

Bây giờ chúng ta đã học được các công thức, chúng ta hãy thử một vài câu hỏi.

Thể tích của hình lập phương bên dưới là \(\small \mathsf{340 \,cm^3}\). Tìm chiều dài của hình hộp chữ nhật.

\(\small{\textsf{Chiều dài (L)} = \;? \\ \textsf{Chiều rộng (B)} = 4 \textsf{ cm} \\ \textsf{Chiều cao (H)} = 5 \textsf{ cm} \\ \textsf{Khối lượng (V)} = 340 \mathsf{\;cm^³}}\)

Chiều dài \(\small{= \textsf{Âm lượng} \div \textsf{(Chiều rộng} \times \textsf{Chiều cao)}\\ = 340 \mathsf{\;cm^3} \div (4 \textsf{ cm} \times 5 \textsf{ cm})\\ = 340 \mathsf{\;cm^3} \div 20 \mathsf{\;cm^2}\\ = 17 \textsf{ cm}}\)

Thể tích của hình lập phương là \(\small{1331 \mathsf{\;cm^3}}\). Tìm độ dài cạnh của hình lập phương.

\(\small{\begin{align} \textsf{Khối lượng (V)} &= \mathsf{1331\,cm^3} \\ \textsf{Chiều dài (L)} &= \textsf{?} \end{align}}\)

Độ dài cạnh của hình lập phương \(\small{= \sqrt[3]{1331} \mathsf{\;cm^3} \\ = 11 \mathsf{\;cm}}\)

Công thức tính bán kính mặt cầu nội tiếp khối lập phương là bán kính

• Bước 1: Vẽ mặt đáy: vẽ hình bình hành ABCD – chính là mặt đáy khối lập phương ABCDEFGH.

• Bước 2: Lần lượt dựng các đường cao có độ dài a, ta được các đường cao AE, BF, CG, DH = a.

• Bước 3: Nối các đỉnh E,F,G,H ta được khối lập phương ABCDEFGH

Lưu ý: Kẻ nét đứt cho AD, DC, HD vì đây là những đoạn bị lấp.

Bài 1: Khối lập phương là khối đa diện đều loại nào sau đây?

Khối đa diện đều thuộc loại {n;p} là khối đa diện đều mà mỗi mặt của đa diện đều là tứ giác đều n cạnh, mỗi đỉnh của đa diện đều là đỉnh chung của p cạnh.

Dựa vào lí thuyết về khối đa diện đều ta có khối lập phương thuộc loại {4;3}

Bài 2: Tính thể tích của khối lập phương có cạnh bằng 4.

Thể tích của hình lập phương có cạnh bằng a là: V = a3

Thể tích của hình lập phương có cạnh bằng 4 là: V = 43 = 64

Bài 3: Tính thể tích V của khối lập phương có các đỉnh là trọng tâm các mặt của khối bát diện đều cạnh a.

Sử dụng công thức tính thể tích hình lập phương cạnh x là

Gọi K là trung điểm AB, M là trung điểm CD.

Ta có khối lập phương cần tìm là QPHJ.Q’P’H’J’.

Xét tam giác SKM có Q là trọng tâm tam giác SAB và H là trọng tâm tam giác SCD.

Mà K là trung điểm A và M là trung điểm CD nên KM = AD = a nên

Xét tam giác QPH vuông cân tại P, theo định lý Py-ta-go ta có

Vậy khối lập phương cần tìm có cạnh nên có thể tích là

Bài 4: Tính thể tích của khối lập phương có cạnh bằng a.

Công thức tính thể tích khối lập phương

Thể tích khối lập phương cạnh a là V = a3

Bài 5: Cho khối lập phương ABCD.A'B'C'D' có O và O' lần lượt là tâm các hình vuông ABCD và A'B'C'D'. Gọi V1 là thể tích khối nón tròn xoay có đỉnh là trung điểm của OO' và đáy là đường tròn ngoại tiếp hình vuông A'B'C'D', V2 là thể tích khối trụ tròn xoay có hai đáy là hai đường tròn nội tiếp hai hình vuông ABCD và A'B'C'D'. Tỷ số thể tích là:

Xác định bán kính đáy là bán kính đường tròn ngoại tiếp hình vuông và chiều cao tương ứng theo dữ kiện của bài toán

Khối nón có chiều cao ,bán kính đáy

Khối trụ có chiều cao ,bán kính đáy

Vậy qua các nội dung chúng ta vừa tìm hiểu về khối lập phương thì để hiểu và làm chính xác những dạng bài tập này, đây là dạng bài tập về hình học sẽ thường xuyên xuất hiện từ 3-4 câu trắc nghiệm trong kỳ thi trung học phổ thông quốc gia theo các mức độ lần lượt từ thông hiểu đến vận dụng cao.

Chịu trách nhiệm nội dung: GV Nguyễn Thị Trang

Bài viết dưới đây sẽ giới thiệu công thức tính thể tích khối lập phương, công thức tính diện tích hình lập phương, mời các bạn tham khảo.